PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7 : (11) International Publication Number: WO 0070500
GOGF 17/30 A2 , o

(43) International Publication Date: 23 November 2000 (23.11.00)

(21) International Application Number: PCT/US00/11946 | (81) Designated States: AE, AG, AL, AM, AT, AU, AZ, BA, BB,

(22) International Filing Date: 1 May 2000 (01.05.00)

(30) Priority Data:

09/312,308 14 May 1999 (14.05.99) uUs

(71) Applicant (for all designated States except US): PIVIA, INC.
[US/US]; Suite 200, 10062 Miller Avenue, Cupertino, CA
95014 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): MOHAN, Sudhir
[US/US]};, 5006 Calle de Escuela, Santa Clara, CA
95054-1431 (US). PATIL, Umesh, R. [IN/US]; 811 Milo
Court, San Jose, CA 95133 (US). JORDAN, Danijel, S.
[US/US]; 32 Museum Way, San Francisco, CA 94114
(Us).

(74) Agents: MILLIKEN, Darren, J. et al.; Blakely, Sokoloff, Taylor
& Zafman LLP, 7th floor, 12400 Wilshire Boulevard, Los
Angeles, CA 90025 (US).

BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM,
DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL,
IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU,
LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT,
RO, RU, SD, SE, SG, S], SK, SL, TJ, T™M, TR, TT, TZ,
UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH,
GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ], TM), European
patent (AT, BE, CH, CY, DE, DK, ES, Fl, FR, GB, GR,
IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF,
CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published
Without international search report and to be republished
upon receipt of that report.

(54) Title:

(57) Abstract

CLIENT-SERVER INDEPENDENT INTERMEDIARY MECHANISM

A method and apparatus for a client—server independent intermediary mechanism is provided. The method comprises displaying a
frame including a user interface of the IIM, the frame framing a destination server display area (DSDA). The method further comprises
retrieving data for display from a destination server, and instrumenting the data prior to display such that future data retrieved from the
destination server is displayed in the DSDA, without writing over the frame.

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CcG

CI
CM
CN
Cu
Ccz
DE
DK
EE

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d'Tvoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
1IE
IL
IS
IT
JP
KE
KG
KP

KR
KZ
LC
LI

LK
LR

FOR THE PURPOSES OF INFORMATION ONLY

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Treland

Isracl

Tceland

Traly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LYV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
SZ
TD
TG
TJ
™
TR

Slovenia

Slovakia

Sencgal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

WO 00/70500 PCT/US00/11946

CLIENT-SERVER INDEPENDENT INTERMEDIARY MECHANISM

FIELD OF THE INVENTION
The present invention relates to client-server communication, and more

specifically, to using an independent intermediary mechanism between a client and a

server.

BACKGROUND

The World-Wide Web (WWW, W3, the Web) is an Internet client-server
hypertext distributed information retrieval system. An extensive user community has
developed on the Web since its introduction.

Figure 1 is a block diagram of a prior art client-server system. The client A 110
can access destination servers DS1-DS3 150-170. Similarly, other clients B and C, 120
130, can access the destination servers DS1-3 150-170. Each destination server may
provide different services, information, or other data to the user.

On the Web everything (documents, menus, indices) is represented to the user as
hypertext objects in hypertext markup language (HTML) format, or as Java, or
JavaScript objects, or other data types. Hypertext links refer to other documents by
their uniform resource identifiers (URIs). The client program, known as a browser, e.g.
NCSA Mosaic, Netscape Navigator, runs on the user's computer and provides two basic
navigation operations: to follow a link or to send a query to a server. Users access the
web through these browsers.

Users often access the web from multiple locations. Users may access the web
from their office, at different locations at work, at home, or on the road. Libraries and
Internet cafes make web access available on a walk-in basis as well.

A user accesses a server by typing the URI of the server into the browser’s
address window. The browser then connects to the server corresponding to this URL.
Another method of accessing a web site is by selecting the web site from the list of
bookmarks. The list of bookmarks is resident in the browser in the user’s computer.

Thus, if a user wishes to have similar bookmarks on multiple computers, he or she must

WO 00/70500 PCT/US00/11946
22-

manually copy the bookmarks and transfer them between the computers. This process
is inconvenient.

Furthermore, many servers use cookies to store information about the user. This
information may include the user name, password, previous interests, etc. These
cookies are also stored in the user’s browser. Again, this means that if the user is
accessing the Internet from multiple computers, the user’s cookies have to be duplicated
into multiple computers. This process is inconvenient.

Many users have multiple accounts on different computer systems. For example,
a user may have an account with a bank, an e-mail account, a personalized portal site
account, and an account on an e-commerce server. Currently, the users must log into
each of these accounts by remembering and providing his or her user name and
password. For security, each of these user names and passwords should be different.
Remembering different names and passwords is inconvenient to the user. Thus, a
method for a simple log-in into various accounts from any computer would be
advantageous

Most clients and servers support "forms" which allow the user to enter arbitrary
text as well as selecting options from customizable menus and on/off switches. As
more business is transacted on the Web, forms are proliferating. The forms may
include forms for requesting further information, for ordering items from the Web, for
registering for a Web site, etc. However, the user generally can not get a copy of the
information filled into the form. The user can either print the page when the form is
filled in, generating a paper copy, or rely on the server to respond in a manner that
permits the user to make a record of the information entered in to the form. A method
of tracking information filled into forms would be advantageous. Furthermore,
vendors may respond with an order number or other useful information. The user can
keep a copy of this page, which is generally only temporarily available, by printing it, or
copying down the information provided. A method of attaching this vendor response
to the original order information and making both available to the user would be
advantageous.

Furthermore, currently, the user has to fill out each of these forms separately.

Generally, the forms request the same types of information, i.e. name, address,

WO 00/70500 PCT/US00/11946
-3

telephone number, e-mail address, etc. The user has to enter all of this information for
each form. This is repetitious and takes time. Additionally, if such information as
credit card number or social security number is requested, the user has to pull out the
credit card and copy a long string of numbers. This makes errors likely. Furthermore,
the user has to verify that a Web site that requests a credit card number or similar
confidential information is of the appropriate level of security for the user to feel

comfortable sending the information over the Web. An improved method of filling out

forms would be advantageous.

SUMMARY OF THE INVENTION

A method and apparatus of a client-server independent intermediary mechanism
(IIM) is described. The method comprises displaying a frame including a user interface
of the IIM (IIM frame), and a second frame framing a destination server display area
(DSDA). The method further comprises retrieviﬁg data for display from a destination
server, and instrumenting the data prior to display such that future data retrieved from
a destination server is displayed in the DSDA, without writing over the IIM frame.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example, and not by way of
limitation, in the figures of the accompanying drawings and in which like reference
numerals refer to similar elements and in which:

Figure 1 is a block diagram of a prior art client-server system.

Figure 2 is a block diagram of one embodiment of the client-server system
including the independent intermediary mechanism.

Figure 3A is a block diagram of one embodiment of the client-server system
including multiple independent intermediary mechanisms.

Figure 3B is a block diagram of another embodiment of the client-server system
including multiple independent intermediary mechanisms.

Figure 4 is a block diagram of one embodiment of the independent intermediary

mechanism.

Figure 5 is a block diagram of one embodiment of the layout of the user interface

of the independent intermediary mechanism.

WO 00/70500 PCT/US00/11946
-4-

Figure 6 is a flowchart of an overview of using the independent intermediary
mechanism.

Figure 7 is a flowchart of one embodiment of the process of displaying
information from a destination server through the independent intermediary

mechanism.

Figure 8 illustrates one embodiment of the user interface of the independent

intermediary mechanism.

Figure 9 illustrates another embodiment of the user interface of the independent
intermediary mechanism.

Figure 10 is a flowchart of one embodiment of the form fill functionality.

Figure 11 is a flowchart of one embodiment of the learning process in the
database.

Figure 12A is a flowchart of one embodiment of adding accounts.

Figure 12B is a flowchart of one embodiment of accessing an account through an
‘auto-log-in feature.

Figure 13 is a flowchart of one embodiment of the transaction management
functionality.

Figure 14 illustrates one embodiment of the listing of transactions.

Figure 15A is a flowchart of one embodiment of selection of a home page or a
bookmark.

Figure 15B is a flowchart of one embodiment of using the bookmark
functionality.

Figure 15C is a flowchart of one embodiment of using the history functionality.

Figure 16A-C are tables illustrating examples of redirecting references to DS
through IIM.

Figure 17 is a table illustrating examples of making the IIM user interface frame
persistent.

Figure 18 is a table illustrating examples of accessing cookies from the IIM.

Figure 19 is a table illustrating examples of preserving top frame or IIM frame
integrity for DS.

WO 00/70500 PCT/US00/11946

DETAILED DESCRIPTION

A client-server independent intermediary mechanism is described. The
independent intermediary mechanism (IIM) mediates information exchanged between
a client and servers by having the client-server communication pass through the IIM.
This allows the IIM to offer various services. For one embodiment, the IIM may be used
to have a central web-accessible set of bookmarks. The IIM may further provide
tracking of transactions on the web, providing a user-accessible transaction record. The
[IM may further be used to fill in various forms automatically. The IIM may further be
used to access multiple accounts, such as e-mail accounts, bank avccounts, etc. with a
single button. The IIM may further be used to store the user’s profile, including
passwords to various pages, etc. These and other uses of the IIM are described below.

Figure 2 is a block diagram of one embodiment of the client-server system
including the independent intermediary mechanism. Multiple clients A-C 210, 215, 220
access multiple destination servers (DSs) 280, 285, 290, through the independent
intermediary mechanism (IIM) 250. Client A 210 is described as an example. Itis to be
understood that multiple clients are implemented in similar ways.

Client A 210 accesses the IIM 250. For one embodiment, this occurs when the
user of the client A 210 accesses the web site hosting the IIM 250. When the IIM 250 is
accessed, a new client component (CC) 230 is established. The client component(s) 230,
235, 240 and the server component 260 together form the IIM 250. For one embodiment,
the IIM 250 is located on a server accessed by the client A 210 through an Internet
connection. For another embodiment, the IIM 250 is located within the local Intranet of
client A 210. For yet another embodiment, the IIM 250 is located on the client’s own
computer.

For one embodiment, the client component 230 is established on the local
computer of the client 210. For another embodiment, the client component 230 is on a
server, or on a third computer system. The client component 230 is created in response
to the client 210 connecting to the IIM 250.

The client A 210 has a connection to the server component 260 through the client
component 230. For one embodiment, the client A 210 also establishes a direct

connection with the server component 260. This direct connection may be used to

WO 00/70500 PCT/US00/11946

-6-

communicate certain information directly between the server component 260 and the
client A 210. The client 210 accesses the destination servers DS1-3 280, 285, 290 through
the IIM 250. For one embodiment, all of the communication between the destination
server DS1 280 and the client A 210 is routed through the IIM 250. For another
embodiment, certain communications are routed directly between the client A 210 and
the destination server 280. For example, certain large images that do not invoke other
images or other data may be routed directly in order to speed up processing.

The number of client components 230, 235, 240 depends on the number of clients
210, 215, 220 coupled to the server component 260 at any one time. For one
embodiment, the server component 260 consists of multiple components that act
together. A block diagram of one embodiment of the IIM 250 may be found in Figure 4,
below.

Figure 3A is a block diagram of one embodiment of the client-server system
including multiple independent intermediary mechanisms 350, 360. Each IIM 350, 360
is shown having a corresponding server component, 355, 365. For another embodiment,
the server components 355, 365 may be located on a single server, or within a single
IIM. Having server components 355, 365 coupled together may serve multiple
purposes. For example, if a single IIM 350 has too many users connected to it, the IIM
350 may redirect users to a second IIM 360. For another embodiment, a user may log on
to a local IIM 350, for speed reasons, and the local IIM 350 may connect to the user’s
“home” 1IM 360 to retrieve the user’s data. For yet another embodiment, the user can
connect to their “home” IIM 350, which is remote, and the “home” IIM 350 may redirect
the user to a local IIM 360 and send the user’s data to the local IIM 360. In this way, the
user’s connection to the IIM 350, 360 may be optimized.

Figure 3B is a block diagram of another embodiment of the client-server system
including multiple independent intermediary mechanisms. In this example, a client 310
is coupled to two IIMs 350, 360. Generally, the client 310 first connects to the first IIM
350. Then, through the user interface of the first IIM, the client 310 connects to the
second IIM 360. This may be advantageous if, for example, the first IM 350 and second
IIM 360 provide different services. Thus, for example, one IIM 360 may provide

additional account management features, while the other IIM 350 provides form-fill

WO 00/70500 PCT/US00/11946
-7-

features. By connecting to both IIMs 350, 360, in series, the user has access to the
features provided by both IIMs 350, 360.

Figure 4 is a block diagram of one embodiment of the independent intermediary
mechanism. The IIM 400 has three layers. The lowest layer of the IIM 400 is the core
engine 410. The core engine 410 includes a server component SC and a client
component CC. The Server Component, for one embodiment, is resident on the server,
and handles all remote actions. The Client Component, for one embodiment, is resident
on the client’s system, while the client is connected to the IIM 400. For one
embodiment, the client component is automatically removed from the client’s system
when the client disconnects from the IIM 400. The lowest layer also includes a Cookie
Manager 413, for managing any cookies received from and being sent to the destination
server. The use of such cookies is discussed in more detail below. Furthermore, the
lowest layer may include a Activation Manager 416. The Activation Manager 416
determines if information is being transmitted by the destination server. For one
embodiment, the Activation Manager 416 further determines if information is beihg
initiated by a usel."s action. Information transmitted between the DS and the client is
instrumented by the IIM 400, as will be described below. The Activation Manager 416
detects when the IIM 400 should review communication between the client and the DS.

The second layer is the application/UI framework layer 420. The application/UI
framework layer 420 establishes the basic user interface and IIM engine. The
application/UI framework layer 420 creates a persistent frame for the IIM 400. For one
embodiment, the application/ Ul framework layer 420 further includes an
instrumenting manager 425, for instrumenting data flowing from the destination server
to the client, through the IIM 400. This process of instrumenting is described in more
detail below.

The third layer is the applications layer. The applications layer includes multiple
applications. The applications listed here are listed as an example, and are not a
complete list. The applications layer, for example, may include a Navigation Manager
430. The Navigation Manager 430 permits a user to navigate from destination server to
destination server using the IIM 400. The applications layer may further include a

Transaction Manager 440.

WO 00/70500 PCT/US00/11946
-8-

The Transaction Manager 440 tracks the user’s transactions, stores them, and
makes them available for the user’s review. Transactions are interactions in which a
user submits information to a destination server, for example to order an item, ask a
question, or otherwise interact with the destination server. The Transaction Manager
440 tracks the data submitted by the user, and any response from the destination server,
and permits the user to access this information.

The Account Manager 450 permits the user to log into a variety of accounts, from
e-mail to stock trading accounts, using a single click. The Account Manager 450 further
permits the user to add accounts to this list. The Form Manager 460 permits the user to
fill out forms encountered on destination servers via a single click. This is extremely
useful for users that transact business on the web, and often fill out identical forms
many times. The Profile Manager 470 is the database of the user’s personal information.
This information may be edited by the user, and is used to fill in forms via the form
manager 460. The Database Manager 480 manages the various databases of the IIM 400.

The Bookmark Manager 490 permits the user to manage bookmarks maintained
within the IIM 400. Having bookmarks, URIs of pages the user wishes to save, available
in the IIM 400 permits the user to access his or her bookmark list from any computer.

The History Manager 495 permits the user to manipulate the history list of sites
the user has previously visited. For one embodiment, the user can change the
permanence of the history lists, for another embodiment, the user can delete certain
sites from the history list.

The Homepage Manager 497 permits the user to set a homepage that is
displayed when the user initially connects to the server providing the IIM 400.

As can be seen, the IIM provides multiple functionalities. A single IIM 400 may
include all of the functionalities described above, additional functionalities, or some
subset of these functionalities. The IIM’s functionality may be extended with additional
features.

Figure 5 is a block diagram of one embodiment of the layout of the user interface
of the independent intermediary mechanism. The client browser application window
510 is displayed by a browser, such as Netscape Navigator or Microsoft Internet
Explorer. The client side display area (CSDA) 520 is the display area available in the

WO 00/70500 ' PCT/US00/11946
9.

browser application window 510. Most browsers have a toolbar and other displays
within the browser application window 510." For one embodiment, the IIM is designed
to minimize the area of the browser application window that is not the CSDA 520.

The CSDA 520 includes a toolbar frame 530. Although the tool bar frame 530 is
referred to as a frame, for one embodiment, the tool bar frame 530 may be implemented
in a non-frame format. For one embodiment, the tool bar may be implemented as a
separate window. For another embodiment, the tool bar may be implemented as part
of the display, not as a frame.

The CSDA 520 further includes a destination server display area (DSDA) 540.
The DSDA 540 is the area in which all information from destination servers is
presented.

The CSDA 520 further includes a communications frame 550. The
communications frame 550 is for communication between the client side and server side
of the IIM. Generally, the communications frame 550 is hidden from the user’s view.

“Thus, the user would not see the communication between the client component and the
server component.

Figure 6 is a flowchart of an overview of using the independent intermediary
mechanism. At block 610, the user connects to the IIM through the client browser. For
one embodiment, this is done by typing the address of the IIM into the address window
of the browser. For one embodiment, the IIM may be the preset homepage of the user,
or a bookmark in the client browser.

At block 615, the user connects to a destination server (DS) through the IIM. For
one embodiment, this is done by typing the address of the destination server into the
address window of the IIM. For another embodiment, the user may select an address
from a history list of previously visited sites, from a bookmark list in the IIM, or the
destination server may be a preset homepage in the IM. The IIM records the DS in the
history database. The history database tracks the web sites that the user has visited in
the past. Such a history database may be useful to permit backtracking, or to visit
previously visited sites. For one embodiment, this history database is maintained for a
fixed duration of time, or a user preset period of time. For another embodiment, the

history database is maintained indefinitely.

WO 00/70500 PCT/US00/11946
-10-

At block 620, the process changes the reference to DS to go through the IIM and
load the information from the DS in the DSDA, maintaining the IIM frame. This is
described in more detail below.

At block 625, the IIM determines whether the user submitted information to the
destination server. For one embodiment, the actual test is whether information that is
“sensitive” or “of interest” is submitted to the DS. For example, if a user selected a
radio button for the next display, the response would be “no” even though some
information was submitted. For one embodiment, the answer to this query is yes only if
information that is in the user’s profile is submitted. For one embodiment, the answer
to this query is provided by the user through the user interface. If the answer is yes, the
process continues to block 630.

At block 630, the user’s communication with the DS is recorded in the user’s
transaction database. For example, if the user ordered an item from a destination server
site, the form that was filled in by the user, including all of the information filled in,
would be recorded in the transaction database. This transaction database is available to
the user. The process then continues to block 635. If, at block 625, the answer was no,
the process continues directly to block 635.

At block 635, the IIM forwards the communication, i.e. the information
submitted by the user, to the DS. This communication includes relevant cookies. A
cookie is a packet of information sent by a destination server to a browser and then sent
back by the browser each time it accesses that server. Cookies can contain any arbitrary
information the server chooses and they are used to maintain state between otherwise
stateless transactions. Generally, cookies are maintained in a user’s browser. However,
for one embodiment, the IIM maintains the user’s cookies. This permits a user to log
into a site, and have the appropriate cookies available, no matter from what web client
device or client browser the user accesses the site. |

At block 640, the process determines whether the destination server responded
to the user’s submission of information. For one embodiment, some destination servers
respond, with a thank you page, other data pertaining to order number, shipping code,
delivery date, etc., when information is submitted to them. If the destination server

responds at block 640, the process continues to block 645.

WO 00/70500 PCT/US00/11946
-11-

At block 645, the DS’s response is recorded in the user’s transaction database,
and associated with the user’s submitted information. Thus, when the user reviews the
transaction, he or she can review the entire transaction, including the DS’s response.

At block 650, the IIM instruments the DS’s response, stores any cookies returned
by the DS, and forwards the response to the client browser. One embodiment of this
process is illustrated in more detail in Figure 7, below. Tables of some results of the
process of instrumenting are illustrated in Figures 16 A-C, and Figures 17-19.

At block 655, the process tests whether the user continues to browse through the
IIM. The user continues to browse, the process returns to block 615. Otherwise, the
process ends at block 660.

Figure 7 is a flowchart of one embodiment of the process of instrumenting data
displayed from a destination server through the independent intermediary mechanism.
For one embodiment, Figure 7 is a more detailed flowchart of block 650, in Figure 6. At
block 705, the IIM receives a communication from the DS. For one embodiment, this
occurs in response to a user contacting a DS through the IIM.

Atblock 710, the process tests whether there is a cookie or multiple cookies
associated with the communication. Cookies may be sent by the DS to the client, to be
stored on the client browser. If a cookie is associated with the communication, the
process continues to block 715. At block 715, the IIM cookie database is updated with
the new cookie. For one embodiment, cookies sent by the DS to the client browser are
handled through the IIM. Thus, the IIM would store all of the cookies for a DS, and
give the DS its cookies. This is advantageous because it permits a user to access a DS
from any computer, and all of the user’s cookies are immediately available through the
IIM. The process then continues to block 725. If no cookies were associated with the
communication, the process continues directly to block 725. |

At block 725, the process parses the code to find the next keyword. For one
embodiment, keywords are tags in HTML, or known keywords in Java or JavaScript.
Figures 16-19 illustrate some examples of keywords that may trigger this process. For
another embodiment, keywords may be any triggering signal that indicates that an

action may be performed.

WO 00/70500 PCT/US00/11946
-12-

At block 730, the process tests whether a keyword was found. If no keyword
was found, the process continues to block 735, and ends. If the communication has no
remaining keywords, the document has been fully instrumented, and is ready for
display to the user. For one embodiment, certain communications may have no
keywords at all. In that case, this process would end after a single pass. For yet another
embodiment, under some circumstances, the process may ignore certain keywords.
Certain references are not altered in the communication. For example, references that
call static images, images that do not communicate information to the user and do not
have embedded references, may be of no interest. For example, if the keyword calls a
large passive figure with multiple components, the process may ignore the entire figure,
by tagging figure related communications, and exit out of this process even if keywords
remain. By altering only those references that are of interest, the process may be sped
up. If a keyword was found, the process continues to block 740.

At block 740, the process tests whether the keyword is an attempt to access a
cookie from the cookie database. If the keyword is an attempt to access a cookie, the
process continues to block 745. At block 745, the access attempt is changed to fetch the
cookie from the IIM’s cookie database. Some examples of this process are provided in
Figure 18. For one embodiment, the IIM’s cookie database may access the client
browser’s cookie database in order to determine whether there are additional cookies
on the client browser. For one embodiment, the IIM can, with the user’s permission,
copy cookies from the browser cookie database to the IIM. This simplifies moving from
direct access of a DS to accessing a DS through the IIM. The process then continues to

block 750.

If the keyword is not an attempt to access a cookie, the process continues directly
to block 750.

At block 750, the process tests whether the keyword is an attempt to access the
top frame or IIM frame. If the keyword is an attempt to access the top frame or IM
frame, the process continues to block 755. At block 755, the access attempt is changed to
access the top area of the destination server display area (DSDA). Some examples of

this process are provided in Figure 17. The process then continues to block 760.

WO 00/70500 PCT/US00/11946
-13-

If the keyword is not an attempt to access the top of IIM frame, the process
continues directly to block 760.

At block 760, the process tests whether the keyword is a reference to the
destination server. If the keyword is a reference to the destination sefver, the process
continues to block 765. At block 765, the reference is changed to be fetched through the
IIM. Some examples of this process are provided in Figure 16 A-C. The process then
continues to block 770.

If the keyword is not a reference to the destination server, the process continues
directly to block 770.

At block 770, the process tests whether the keyword is an attempt to access data
from the top frame or IIM frame. If the keyword is an attempt to access data from the
top frame or IIM frame, the process continues to block 775. At block 775, the access
attempt is changed to fetch data from the topmost frame of the DSDA. Some examples
of this process are provided in Figure 19. The process then returns to block 725, and
parses to find she next keyword. '

For one embodiment, the above process may be triggered by a user. For
example, a user may select a link, activate a JavaScript function, or otherwise initiate
communication between the destination server and the client. The same process may
occur in response to a cookie being sent or received, or a keyword being found as
described above with respect to Figure 7.

Figure 8 illustrates one embodiment of the user interface of the independent
intermediary mechanism. The user interface includes a browser toolbar 805. For one
embodiment, the IIM may configure the browser such that the browser toolbar area 805
is not displayed when the IIM is active. The display area 810 of the browser includes
the IIM toolbar 820, a hidden communications frame 815, and the destination server
display area 845.

The IIM toolbar 820 includes the known browser controls 825, such as back,
forward, refresh, stop, etc. Additional browser controls 825 may be added. The toolbar
820 further includes an address entry control 830, where a user can type a destination

server address in order to access the DS.

WO 00/70500 PCT/US00/11946

-14-

The IIM toolbar 820 may further include buttons, or other selection mechanisms
that permit a user to configure and use the IIM. The buttons may include Home,
selecting a user’s preset homepage, etc. The homepage is preset using the Set Home
button 852. The buttons may further include the Mall button, giving one-button access
to shopping. The buttons may further include Tags 860, displaying a list of a user’s
bookmarks. Bookmarks are added by selecting the Tag Address while visiting a web
site, or by selecting the Tag Address button 862, and typing the address of a location to
be bookmarked. '

The buttons may further include Accounts 865, permitting single-button log-on
to a variety of accounts. These accounts are added with the Add Account button 867, as
will be described below.

The buttons may also include a Transactions button 870, that permits a user to
review his or her transactions. This is illustrated in the destination server display area
845 of Figure 8. The Profile button 875 permits the user to enter his or her personal
data. The Fill-Form button 880 permits the user to fill in a form using the personal data
from the user’s profile or by using information submitted previously using the same
form. If a form is displayed on the destination server display area 845, and the user
selects the fill-form button 880, the form is automatically filled in with the user’s
information. The Clear Form button 882 permits a user to remove the information filled
into a form. This provides an additional level of security to the user.

The Admin button 885 provides access to account administration services. For
one embodiment, the Admin button 885 is only available to those users who are
authorized administrators. For one embodiment, the Admin button 885 is only
displayed if the user is authorized to access account administration services.

' The toolbar 820 further includes a Bye button 890, which logs off the user from
the IIM. The toolbar 820 illustrated is exemplary. The content and organization of the
buttons on the toolbar 820 may be changed without changing the invention.

Figure 9 illustrates another embodiment of the user interface of the independent
intermediary mechanism. As can be seen, the user interface may be flexibly
implemented. Certain features may be provided by one interface and not provided by

another. Furthermore, the look and feel of the user interface may be altered. The user

WO 00/70500 PCT/US00/11946
-15-

may, for example, access all of the IIM features through pull-down menus, such as the
pull-down menu 935, or radio buttons instead of buttons. One skilled in the art
understands other types of user interface changes that may be made without departing
from the broader spirit and scope of the invention as set forth in the appended claims.

Figure 10 is a flowchart of one embodiment of the form fill functionality. At
block 1010, a document with a form is displayed. For one embodiment, this is a result
of a user accessing a destination server location that includes a form. This form may be
an order form, an information request form, or any other form that may be encountered
on the Web.

At block 1015, the user requests the form-fill function through the IIM user
interface. For one embodiment, the user presses the form-fill button. For another
embodiment, the form fill may be automated. For yet another embodiment, the user
can select whether the form fill function is automatically engaged.

At block 1020, the process determines whether the form is in the user’s
transaction database. The user’s transaction database has records of previously
accessed and filled-in forms for the particular user. The transaction database may
maintain such records for a limited time, or the user may delete transaction records.
Thus, merely because a user has been to a particular site previously may not mean that
the form is in the user’s transaction database. If the form is in the user’s transaction
database, the process continues to block 1040, otherwise, the process continues to block
1025.

At block 1025, the process determines whether the form is in the form database.
The form database is maintained by the IIM and includes “known” forms. Such known
forms have associations between form control identifiers in the form and profile items.
Thus, for example, a form control identifier that is labeled “name” may have a link to
the “First Name Last Name” item in the user profile. If the form is known, the process
continues to block 1030. At block 1030, the form control identifiers in the form are filled
in from the user profile. The process then returns to block 1055.

If the form is not known, the process continues to block 1035. At block 1035, the
form controls are identified, based on the name of each control. Each control name is

associated with entries in the user profile. The process then continues to block 1030,

WO 00/70500 PCT/US00/11946
-16-

and the data is filled into the form from the user profile. For one embodiment, block
1035 is skipped. This type of “guessing” may be user enabled, or may be only
attempted for forms that are similar to known forms.

At block 1020, if the form was found in the user’s transaction database, the
process continued to block 1040. At block 1040, the process tests whether any data in
the user profile has been changed since the transaction in the transaction database was
recorded. Transaction records are dated, as are changes to the user profile. A user
profile may be changed by the user, for example, to change a credit card expiration
date, number, or home address. If a user profile change of a relevant field is dated after
the transaction record date, the process continues to block 1045, otherwise, the process
continues directly to block 1050.

At block 1045, the changed information is filled in from the user profile. In this
way, the user only had to update his or her records once, in the profile, and that change
is carried through the IIM. For one embodiment, this step may be skipped. For another
embodiment, this step may be user enabled.

At block 1650, the remaining form control identifiers in the form are filled with
data from the transaction database. The process then continues to block 1055.

At block 1055, the filled-in form is displayed to the user, and the user is
permitted to edit the data in the form. The user, for example, may not wish to provide
certain data to a destination server. The user may chose to erase such data.
Alternatively, the form may request data that is not found in the user’s profile. The
user may chose to fill in such data.

At block 1060, the user submits the form to the destination server. For one
embodiment, the IIM stores the information submitted to the server in the user’s
transaction database. This is illustrated in Figure 13 below. At block 1065, the process
ends. For one embodiment, the user may optionally select whether to use the user
profile, transaction database, or both, and in what order, for form fill functions.

Figure 11 is a flowchart of one embodiment of the learning process in the
database. Atblock 1110, a privileged user connects to the IIM. For one embodiment,

this privileged user is an employee of the group maintaining the IIM. For another

WO 00/70500 PCT/US00/11946
-17-

embodiment, this “user” is an artificial intelligence unit that is used to identify forms, as
will be described below. Such intelligent recognition programs are known in the art.

At block 1120, the privileged user accesses a destination server page with a form
through the IIM. At block 1130, the IIM displays a user interface for cataloguing the
form.

At block 1140, the user maps each form control to an element in the user profile
object. The user profile is set up to contain a large number of possible data elements.
Each form control should have a corresponding profile element. If no profile element is
found for a form control, that form control may be tagged as “form specific.” For one
embodiment, multiple elements in the user profile may be associated with a single form
control, or vice versa.

At block 1150, other information about the form is added. This information may
include such information as the address of the form, whether the connection with the
destination server that serves the form is a secure connection, whether the form is of a
particular classification, etc.

At block 1160, the user submits the information to the IIM.

At block 1170, the ITM updates the form identification and form description in
the form database to include the information added by the user. For one embodiment,
the updating is a periodic batch updating. For one embodiment, a single central form
database is maintained. In that instance, the IIM’s updating may include sending the
new form to other IMs. Alternatively, each IIM may maintain its own separate form
database. For yet another embodiment, an IIM may have a central form database, and a
separate internal form database. This may be useful, for example, for an IIM
implemented within a company which has the general form database for pages
accessed outside the company, and a separate internal database for internal web page
forms.

At block 1180, the process ends. Of course, the privileged user may enter
multiple entries, and may start the process again at block 1120.

Figure 12A is a flowchart of one embodiment of adding accounts. At block 1210,
the user connects to the IIM through a client browser. At block 1220, the user accesses a

destination server through the IIM. For one embodiment, the user accesses the account

WO 00/70500 PCT/US00/11946
-18-

log-in page of the DS. This may be, for example, the account log-in page of the user’s
bank, of a portal, or of any other DS.

At block 1230, the user requests to add the account to the user’s account
database. Each user may have an account database, which includes a list of accounts
the user can access with a single click.

At block 1235, the process determines whether the user has submitted log-in

‘information to the account log-in page. If the user has not submitted the information,
the process continues to block 1240, and the user is prompted to complete the log-in
process. For one embodiment, if the account log-in process includes multiple pages, the
user may indicate the end of the log-in process by pressing a certain key, or through
other means. The process then continues to block 1245. If the user has submitted all of
the log-in information, the process continues to block 1245 directly.

At block 1245, the account entry is added to the user’s account database. The
account log-in information and data of account entry creation are recorded. For one
embodiment, urther information may be recorded. For yet another embodiment, only
the user’s log-in procedure is recorded.

At block 1250, the account information is submitted to the DS for login. At block
1255, the process ends.

Figure 12B is a flowchart of one embodiment of accessing an account through an
auto-log-in feature. At block 1260, the user connects to the [IM. At block 1265, the user
accesses the account auto-log-in feature using the IIM user interface. For one
embodiment, this is done by the user pushing the account button.

At block 1270, the user selects an account to log into. For one embodiment, the
user may have multiple accounts. In that instance, the IIM displays the accounts that
the user has. For another embodiment, if the user only has a single account, that
account is automatically selected when the user accesses the auto-log-in feature.

At block 1275, the IIM retrieves login information from the user’s account
database. As discussed above, the user’s previous account log-in is monitored and

recorded. This information is retrieved at block 1275.

WO 00/70500 PCT/US00/11946
-19-

At block 1280, the ITM sends the log-in information to the appropriate
destination server to log-in the user. The account information includes the address of
the DS. The IIM accesses the DS as a client, and sends the user’s information.

At block 1285, the IIM instruments the DS’s response and sends it to the user’s
browser for display. As discussed above, the response is instrumented such that
references of interest are routed through the IIM. The user can now use the account, as
usual. At block 1290, the process ends.

Figure 13 is a flowchart of one embodiment of the transaction management
functionality. At block 1310, the user connects to the IIM.

At block 1320, the user transmits information in a form to the destination server.
For one embodiment, the user first accesses a destination server page including a form
through the IIM. This form may be an order form, an e-mail form, or any other type of
form. The user then fills in the form and submits 'it to the DS. For one embodiment, the
user may use the form-fill method described above to fill-in the form.

At block 1330, the process determines whether the user sent the user’s e-mail
address to the DS. The user may submit his or her e-mail address so the DS can send
responses directly to the user’s e-mail. For example, certain systems may send
confirmation e-mails or alert notices to the user via e-mail. If the user submitted his or
her e-mail address, the process continues to block 1340. Otherwise, the process
continues directly to block 1350.

At block 1340, the e-mail address submitted to the DS is altered. Specifically, the
e-mail address is bifurcated, generated two e-mails. The first e-mail goes to the user’s e-
mail address, as entered. The second e-mail goes to the [IM. The second e-mail
includes in its address the IIM and the transaction tag that identifies the transaction
number to which the e-mail belongs. This allows the IIM to handle the e-mail. The
process then returns to block 1350.

At block 1350, the IIM records a transaction in the user’s transaction database
and associates the submitted information with the transaction. The transaction, for one

embodiment, has a transaction number.

WO 00/70500 PCT/US00/11946

-20-

At block 1360, the IIM determines whether there is a response from the DS. If
there is a response, the process continues to block 1370. Otherwise, the process
continues directly to block 1380.

At block 1370, the IIM records the response from the DS in the user’s transaction
database. For one embodiment, the destination server may respond to the user. This
response is associated with the transaction record. In this way, the user may review the
transaction record, including the response.

At block 1380, further information is recorded about the transaction. For one
embodiment, this information may include the date and time of the transaction, and
other information.

At block 1390, any notes, data, or e-mails received with the transaction tag are
attached to the transaction. This may occur at any time, while the transaction is being
recorded, or after that. The user may attach any data to the transaction, and the IIM
may automatically attach any e-mails received with the transaction tag.

At block 1395, the process ends.:

Figure 14 illustrates one embodiment of the listing of transactions. The
transaction list 1410 may be sorted by date, using a menu 1425. The transactions may
also be sorted by type 1435. For one embodiment, alternative methods of searching
transactions may also be implemented. For example, a user may search the transaction
records for purchases from a certain destination server.

Each transaction record may include one or more of the following: date 1420,
transaction type 1430, and description 1440 of the transaction. The record may further
include the place 1450, the location from where the transaction was recorded. The user
may add and edit additional notes 1460. Furthermore, the user may also add
attachments 1415 to the transaction record. For example, the user may attach e-mails,
documents, video, or other types of data. For one embodiment, e-mails may be
redirected through the IIM and automatically attached to the transaction.

The vendor response 1470 is also recorded. The information the user provided
1480 during the transaction is also included in the transaction record. The transaction

may further include the information whether the transaction belongs to one of the

WO 00/70500 PCT/US00/11946
21-

accounts 1490 in the user’s account database. The user is permitted to delete selected
transaction records using a delete button 1465.

Figure 15A is a flowchart of one embodiment of selection of a home page. The
user connects to the IIM at block 1505.

At block 1510, the user accesses a destination server page through the IIM. At
block 1515, the process determines which option the user is selecting.

If the user is selecting the add bookmark option, the process continues to block
1525. At block 1525, the address of the page is added to the user’s bookmark database.
This database is accessible to the user, to permit the user to access various web sites
without typing the address of the site. The process then continues to block 1530, and
ends.

If the user selected the set home page option at block 1515, the address of the
page is set as the user’s homepage. The user’s homepage is called up when the user
initially connects to the IIM. For one embodiment, the homepage is preset. For another
embodiment, the user may not alter the homepage, and the homepage is customizable
but includes advertising. The process then continues to block 1530, and ends.

Figure 15B is a flowchart of one embodiment of using the bookmark
functionality. Atblock 1535, the user connects to the IIM. At block 1540, the user
requests access to the user’s bookmarks through the IIM user interface. For one
embodiment, the user requests the bookmarks by pressing the “Tags” button on the
user interface.

At block 1545, the IIM generates a bookmark list from the user’s bookmark
database, and sends the list to the client browser to display. For one embodiment, the
bookmark list is displayed in the destination server display area. For another
embodiment, the bookmark list is displayed in a separate window, or a separate frame.

At block 1550, the user selects a bookmark to access a destination server page.

At block 1555, the IIM fetches the page address corresponding to the selected
bookmark from the bookmark database. The bookmark database includes the actual
address of the bookmark.

At block 1560, the destination server page is fetched by the IIM. The data from

the destination server is instrumented and is sent to the client browser for display. In

WO 00/70500 PCT/US00/11946
22.

this way, the user can access bookmarks stored in the IIM’s bookmark database. The
process then continues to block 1565, and ends.

Figure 15C is a flowchart of one embodiment of using the history functionality.
At block 1570, the user connects to the IIM.

At block 1575, the user requests access to the history list through the IIM user
interface. The history list includes the sites the user previously visited. For one
embodiment, the history list is maintained for only a period of time, such as thirty days.
For another embodiment, the history list is maintained indefinitely, and may be purged
by the user.

At block 1580, the IIM generates a history list from the user’s history database,
and sends the history list to the client browser for display. For one embodiment, the
history list is displayed in the destination server display area. For another embodiment,
the history list is displayed in a separate window, or a separate frame

At block 1582, the user selects a list entry to access the destination server page.
At block 1585, the IIM fetches the page address from the history database. The page
address is referenced through the IIM.

At block 1590, the IIM fetches the destination server page, instruments the
communication, and sends the data to the client browser for display. At block 1595, the
process ends. In this way, the IIM permits a user to access a variety of services through
the IIM.

Figures 16 A-C show sample alterations of references from the destination server
by the IIM. Figures 16A-C illustrate changes to HTML, HTTP protocol, JavaScript, and
Java. For one embodiment, this technique may be expanded to new languages and
other types of interfaces. The data that is normally communicated directly between a
Destination Server (DS) and client browser is altered by the IIM, as shown by Figures
16A-C. For one embodiment, some data may be transmitted directly'between the DS
and the client browser, without passing through the IIM.

For one embodiment, the IIM performs a subset of the message modifications
required for redirection and downloads the client component to the client’s browser,

which performs the remaining subset of message modifications on the client machine.

WO 00/70500 PCT/US00/11946

23

Together these two subsets of message modifications provide a complete solution for
using an independent intermediary mechanism between a client and a server.

The modification of HTTP communication messages for redirection occurs on
both the IIM and the client browser using the client component. The points at which the
message modifications occur are called “HTTP control points”.

Figures 16A-C illustrate examples of HTTP control points that occur on the client
browser and the IIM. For HTTP message documents, description of modification code
covers the three programming languages that are most widely used today for HTTP
communication: HTML, JavaScript and Java. For another embodiment, the IIM utility
may be broadened to include HTTP control points in other programming languages
used for HTTP message documents. For one embodiment, the protocol modified in the
messages is defined by the HTTP specification standard. One skilled in the art would
understand how to expand the technique described to different programming
languages or message protocols.

Figure 7 is a table illustrating examples of making the IIM user interface frame
persistent. The IIM prevents DS's from overwriting the user interface of the IIM. This
permits the user to access the [IM regardless of what DS he or she is accessing.

Figure 18 is a table illustrating examples of accessing cookies from the IIM.
Generally, the destination server and destination server data on the client system access
the cookie cache on the client’s computer system. The [IM modifies the access
mechanisms to access cookies from the IIMs cookie database.

Figure 19 is a table illustrating examples of preserving top frame or IIM frame
integrity for DS. Objects are often hung from the top frame of the client browser. The
IIM changes the references to the top frame to create or access these objects to references
to the top frame of DSDA. In this way, the objects are appropriately handled.

Figures 16-19 list some sample alterations resulting from the code instrumenting
described above. Alternative methods of altering the code may be used. One skilled in
the art knows how to implement different changes.

In the foregoing specification, the invention has been described with reference to
specific exemplary embodiments thereof. It will, however, be evident that various

modifications and changes may be made thereto without departing from the broader

WO 00/70500 PCT/US00/11946

-24-

spirit and scope of the invention as set forth in the appended claims. The specification
and drawings are, accordingly, to be regarded in an illustrative rather than a restrictive

sense.

WO 00/70500 PCT/US00/11946

-25-
CLAIMS
What is claimed is:
1. A method of accessing data through an independent intermediary

mechanism (IIM), the method comprising:

displaying a frame including a user interface of the IIM, the frame framing a
destination server display area (DSDA);

retrieving destination server data (DS data) for display from a destination server;

instrumenting the DS data prior to display such that future data retrieved from
the destination server is displayed in the DSDA, without writing over the frame
displaying the user interface of the IIM.

2. The method of claim 1, further comprising:

altering requests for cookies such that cookies relevant to the destination server
are accessed from the IIM.

3. The method of claim 1, further comprising:

determining if a user’s portion of the IIM includes a cookie for the destination
server, and serving the cookie to the destination server and to the DS data, if the user’s
portion includes the cookie.

4. The method of claim 3, further comprising determining if a browser
includes the cookie, and if the browser includes the cookie:

serving the cookie to the destination server and the DS data; and

saving the cookie in the user’s portion of the IIM.

5. The method of claim 2, wherein cookies feceived from the destination
server or created by the DS data are stored in a user’s portion of the IIM.

6. The method of claim 1, wherein at least one reference in the DS data to
other DS data is redirected through the IIM.

7. The method of claim 1, wherein the step of instrumenting data prior to
display comprises replacing a reference to a top frame or IIM frame with a reference to
a top of the DSDA.

8. The method of claim 7, wherein said step of replacing comprises,

in HTML, determining if a value of a Target attribute is “_top”, and changing the

value to represent a topmost area of the DSDA.

WO 00/70500 PCT/US00/11946
26-

9. The method of claim 7, wherein said step of replacing comprises,

in Java, determining if a value of a Target attribute is “_top”, and changing the
value to represent a topmost area of the DSDA.

10. The method of claim 7, wherein said step of replacing comprises, in
JavaScript, replacing the reference to “top” with a reference to a topmost area of the
DSDA.

11. The method of claim 6, wherein for predefined JavaScript, HTML and
other code, the step of instrumenting is performed on a server side of the [IM, and
wherein for dynamically generated code, the step of instrumenting is performed on a
client side of the IIM.

12. The method of claim 1, wherein the step of altering data prior to display

comprises replacing the DS data references to a reference through the IIM.

13. The method of claim 12, wherein only selected references are routed
through the IIM. i}
14. The method of claim 12, wherein said step of replacing comprises altering

a language of the reference such that any parameter which when set causes a document
to be fetched from the destination server causes the document to be fetched through the
M.

15. The method of claim 1, wherein links and references invoked by a user’s
selection are altered when the user selects the reference.

16. A method of accessing data through an independent intermediary
mechanism (IIM), the method comprising;:

retrieving destination server data (DS data) for display from a destination server;

instrumenting the DS data such that future data retrieved from the destination
server is retrieved through the IIM.

17. A method of accessing data through an independent intermediary
mechanism (IIM), the method comprising;:

retrieving destination server data (DS data) for display from a destination server;

altering a request for a cookie from the destination server or the DS data, such
that the cookie relevant to the destination server is accessed from the IIM; and

storing and updating the cookie in the IIM cookie database.

WO 00/70500 PCT/US00/11946
-27-

18. An independent intermediary mechanism (IIM) comprising;:

a core engine retrieving destination server data (DS data) for display from a
destination server;

a user interface framework for maintaining a frame including the IIM user
interface on a client browser as the client browser accesses different destination servers;

19. The IIM of claim 18, further comprising;:

a cookie database;

a cookie modification engine that alters a request for a cookie from the
destination server or the DS data, such that the cookie relevant to the destination server
is accessed from the IIM cookie database; and

the cookie modification engine further for maintaining and updating the cookie.

20. The IIM of claim 18, further comprising;:

a data modification engine for instrumenting the DS data such that future data
retrieved from the destination server is retrieved through the IIM.

21. A communications mechanism comprising;:

a first independent intermediary mechanism (IIM) displaying a frame including
a user interface of the IIM, the frame framing a destination server display area (DSDA);

the first IIM retrieving destination server data (DS data) for display from a
destination server and instrumenting the DS data prior to, the first IM further for

providing services to the user.

WO 00/70500

1725

PCT/US00/11946

DS1
130

DS 2
160

DS 3

130 J k 170

FIG. 1 (PRIOR ART)

SUBSTITUTE SHEET (RULE 26)

WO 00/70500 PCT/US00/11946

2/25

DS 1
280

(DS 2

L 285
240
4
CLIENTC INDEPENDENT INTERMEDI ARY DS3
220 MECHANISM (IM) >, 290

FIG. 2

SUBSTITUTE SHEET (RULE 26)

WO 00/70500 PCT/US00/11946

3/25

INTERMEDIARY 1

hm(—\

INTERMEDIARY 2,
360 2

FIG. 3A

SUBSTITUTE SHEET (RULE 26)

PCT/US00/11946

WO 00/70500

4/25

1 Sa

d¢ ‘OIld

Gee

i
i
_
_
_
_
I
_
P L3S _ 120 ! ¢
|
_
_
|
|
|

OLE
INIMO

SUBSTITUTE SHEET (RULE 26)

PCT/US00/11946

WO 00/70500

5/25

v'OId

ol¥
(20) ININOJINOD INFMD + olp Sl
(DS) ININOWOD YIAYIS YIOVNVIA YNV IN
INIONT 3H0D NOUVALLDY E[X 608
Va7 Sab
(IN) YHOMIWYH IYNOLYDTddY | MIOWNVIN NOLLYLNANNYULSNI
/6v Sebr 06t 0,214 0l 0214 09% Ot 057

dFOVNVIN | HFOVNVIN| JIOVINVIN | HIOUNVIN [HTDUNYIN | HIOVNYIN | H3OVNYIN| - H3OVNVIN | MIOVNWIN
JVAINOH | AYOLSIH DIAvIANIO0a| ISvaviva| TTHOYd | W04 | INNOJOV | NOLLOVSNVAL | NOLLYO WN

|

o0

(I1)
WSINVHOIW
AWV IGIWHALNI
INFANIIANI

SUBSTITUTE SHEET (RULE 26)

WO 00/70500

625

PCT/US00/11946

TOOLBAR FRAME 530 CLIENT BROWSER
_ APPLICATION
WINDOW 510
DESTINATION SERVER
DISPLAY AREA (DSDA) ™\ CLIENT SIDE
540 DISPLAY AREA
520
COMMUNICATIONS FRAME 550
F1G. 5

SUBSTITUTE SHEET (RULE 26)

WO 00/70500 PCT/US00/11946

7/25

USER CONNECTS TOIIM
THROUGH CLIENT BROWSER
610

USER CONNECTS TO DESTINATION SERVER (DS)
THROUGH HIM AND [IM RECORDS INSTRUMENTED
DS ADDRESS IN HISTORY DATABASE 615

D*

CHANGE REFERENCES TO GO THROUGH HM TO
LOAD IN DSDA, MAINTAINING [IM FRAME

620
INFORMATION TO DS? IN USER’S TRANSACTION DB
625 630

IM FORWARDS COMMUNICATION
TO DS INCLUDING RELEVANT
COOKIES 635

RECORD DS RESPONSE IN
USER’S TRANSACTION DB
645

'

DtD DS RESPOND?
&40

[IM INSTRUMENTS DS’S RESPONSE,
STORES COOKIES RETURNED BY DS,
FORWARDS TO CLIENT BROWSER
650

DOES USER CONTINUE TO
BROWSE THROUGH 1IM?

SUBSTITUTE SHEET (RULE 26) FI G . 6

WO 00/70500

8/25

IIM RECEIVES
COMMUNICATION FROM DS

PCT/US00/11946

UPDATE IM COOKIE

DATABASE
715

|

PARSE CODE FOR NEXT KEYWORD
725

IS IT ATTEMPT TO
ACCESS COOKIE FROM

CHANGE ACCESS TO FETCH
COOKIE FROM 1IM’S COOKIE DB

745
|

IS IT ATTEMPT TO
ACCESS TOP FRAME?

CHANGE REFERENCE TO
ACCESS DSDA

755

IS ITREFERENCE

CHANGE REFERENCE TO
1M

765

|

ISIT ACCESSING
DATAFROM TOP FRAME?

YES

ACCESS DATA FROM DSDA

775
|

FIG. 7

SUBSTITUTE SHEET (RULE 26)

PCT/US00/11946

8 OId

9/25

—

WO 00/70500

m swzpusw @] T T] | =
s Aedoxd
fedoid = —
“20paLLIooUl ol | v esxcov =y die8l
» y 94 S S5U0aSY ey || TOOF \pEss) 665L0L/E m
adAsuen SSBES o L 80:2r8L
adAsuen S ° d ppe) ! d 6661/91/E |D|
dAsuen STER(] sy || N || mosemu E 8L
ok adfsen SIER SRS | ey | RN X ssslove || 9]
adfdoxd sy O . SrEr8L
wmba % m o4 SR WOOSY i OOWOP | sebow w0 A m_,
I s&bmok sndsy SPN - I - |l
=1 wmam.%n Siesey | VT ET o m_.w&yx am_ X/ tondiossq (| sdAL SEqg |
e
sbesndoxd
: ok Sheendod ubmu”c@zem | s | poYOpS 2PQ [awon][] wops
¢ BILLOJIRY) BIES by
=5 _ngvcé._ﬁ PNRAS wogeolddy
b oLt O aslpng| | >pomiseianp uruam | pewray.ad nof suogoestea sy
(0000059 _
auweud 0¢3 SUORDBSUEJ[S
= -

—~ 88 S¢8 (S8 8 7y (98 $/8 {88

o8 uwpy [~ yssuey| SWoH BS | S4ppy B Kioist sfe| |~ s|yoid| Wi esp
fng | swopdo puocoyppy| swoH | snoooy | e | wuod iy [suopestey
¢ L { ¢ ¢ : L L
-) - - = - — -
pmassz o [§ (oo]
Ip3 kg I 1BR.OS|IN || sPuUey) Kiasiy SaLoAe pleaS || SWwoH yss4py das plemiod oeg

2 & ® B | & ®» ® B |P ©B © ¢ »

o9 dpH sjuoAEy w3 9
] == BIofdx3 IR YOoSODIN-ISIssyleuospd |

SUBSTITUTE SHEET (RULE 26)

PCT/US00/11946

WO 00/70500

10/25

6 DI

4 sz Q] T T | _ €]
SEH U B
FRUEISUT UTSPIOH
[oAeIL
SMpaLps 57, 1) (PSS J6 SN
1nejaq
SOWON BUIIIOUS S8
SEMI0S
Buiddoys
PSIAIOH
OOEX —
a0 el
SVON GO N7 1repg
SMBN burddoys
s0e|d apuoneq |1P3 BlLEU)1 U0 pIP ‘Soed ALoAR) B) 06 o] SN
S0eria1.0me) 07 AU MOy JSWAUI U UO SA0B|d SALIOABS JOISI| JNOA
= 56 %6 S19PI04
— T —— _ A —
A MV 1OPS S ppy
e BT Ny
@@ ULLDY E8§§9§£8< SULIOH 1S | ULo4 Jes(] | uwod |1 | suodQ | 3jyold (suooesuel|| unoooy | ssiuoned | e | aluoy
M§ &E 7% TE~ 776”60 06- G o6 (%6
sun | a LICO'CISISSE MWWy m E
W3 W4 ey weDsindiispuley) ASH SIOAs4 LpUeds || awoy ysgpy dag pemioy peg
A 2 8 B | & > £ | P B ® ¢ 3
9 dpH sSuoe] w3 9y
XIEE] BI0[iX3 IBLLENU| YOSO.DIN-SISSY|RUOS B m

(S~

5

2

=

SUBSTITUTE SHEET (RULE 26)

WO 00/70500

DOCUMENT WITH
FORMS IS DISPLAYED
1010

USER REQUESTS FORM-ALL
FUNCTION THROUGH IIM Ul
1015

NO

DATAIN PROFILE SINCE
TRANSACTION?

FILL IN CHANGED
INFORMATION FROM
PROFILE

1045

|

1125

PCT/US00/11946

HLL INREMAINING INFORMATION
AS IN TRANSACTION DB

1050
v

DISPLAY ALLED IN FORM TO
USER, AND ALLOW USER TOEDIT

FORM 1055
USER SUBMITS FORM
1060

SUBSTITUTE SHEET (RULE 26)

IS FORM IDENTIFY FORM
INFORM DB? FIELD NAMES
1025 1035
|
FILL IN DATAFORM
USER PROALE
1030

WO 00/70500

12/25

PRIMLEGED USER
CONNECTS TOIIM
1110

PRIMLEGED USER ACCESSES
PAGE WITH FORMS ON DESTINATION
SERVER THROUGH {iM

1120
M DISPLAYS USER [INTERFACE
FOR CATALOGUING
FORM 1130

PRIMLEGED USER MAPS EACH
FORM ELEMENT TO AN
ELEMENT IN USER PROFILE
OBJECT 1140

PRIMLEGED USER ADDS OTHER
INFORMATION ABOUT FORM

1150
v

PRIMLEGED USER SUBMITS
INFORMATION TO [IM

1160

Y

|IM UPDATES FORM
IDENTIFCATION AND FORM

DESCRIPTION IN FORM DB1 17

0
v
END
1180

PCT/US00/11946

FIG. 11

SUBSTITUTE SHEET (RULE 26)

WO 00/70500

13725

USER ACCESSES ADS
THROUGH ACCOUNT LOGIN PAGE

1220
Y

USER REQUESTS TO ADD
ACCOUNT TO ACCOUNT
DATABASE

1230

HAS USER

SUBMITTED LOGIN NO

INFORMATION?

PCT/US00/11946

PROMPT USER TO
COMPLETE LOGIN
PROCESS 1240

ADD ACCOUNT ENTRY INTO USER'S
ACCOUNT DATABASE, RECORD
ACCOUNT LOGIN INFORMATION
AND DATE OF ACCOUNT ENTRY

CREATION 1245

Y

SUBMIT ACCOUNT INFO TO
DS FOR LOGIN

1250

SUBSTITUTE SHEET (RULE 26)

FIG. 12A

WO 00/70500 PCT/US00/11946

14/25

USER CONNECTS TO [IM
1260

USER ACCESSES ACCOUNT
AUTO-LOGIN USING UI

1265
USER SELECTS ACCOUNT
TO LOG INTO
1270

IIM RETRIEVES LOGIN INFO
FROM USER’S ACCOUNT
DATABASE 1275

IIM SENDS LOGIN INFO TO
APPROPRIATE DS TO LOG IN
USER 1280

v

IIM INSTRUMENTS DS
RESPONSE AND SENDS IT TO
USER’S BROWSER FOR

DISPLAY 1285

FIG. 12B

SUBSTITUTE SHEET (RULE 26)

WO 00/70500

USER ACCESSES A PAGE
THROUGH INTERMEDIARY
1310

USER TRANSMITS INFORMATION
INTHE PAGE
1320

ADDRESS?
1330

1525

PCT/US00/11946

AFTER E-MAILL ADDRESS TO
BIFURCATE SUCH THAT
RESPONSES GO TO USER AND
TO1IM WITH TRANSACTION TAG

11340

STORE INFORMATION
ON TRANSACTION

1350

DID SERVER
RESPOND TO
TRANSACTION?

1360

YES

STORE RESPONSE
FROM SERVER

1370

ADD DATE, TIME, AND OTHER
INFORMATION STORED TO
TRANSACTION

1380

'

ATTACH ANY NOTES, DATA, OR
E-MAILS RECEIVED WITH
TRANSACTION TAG TO
TRANSACTION 1390

FIG. 13

SUBSTITUTE SHEET (RULE 26)

PCT/US00/11946

WO 00/70500

16/25

2U07 PUB| @

VL "OId

|
]

=]

swpeseyvous |[sumipevepsappg |

EE 1109195

l [S I o e I W | T]
SA S[ER(] 3sUdsSY (ouppe) EUEl Zs0ELesr10]
Dr I Sigpg|_ ssodssy || ewuppe) [weouef || _D_N_ﬁa_a@\@_o_@
(9K SEpg SSdssy (ouppe) WoouEl asieiesleo [
Sivl— Dr SA || Siewq)||_ sSodsy || @wuppe)][wooueT || _D—mw%é@\m\a_@
14 SEpQ SSdsay PWuUppE) WOUL] sechesleoe [
el D_ H sepq[_ ssudoy || (ewuppe) || woo ootk || | JpriEema)[0]
A SR Ssudsy (Bpuppe) WoosEMu an | o VRGeS0 O
H: uc:oooq I m>m08>8pm:§c=§w|=§oz§>: BN __§_E_ Sl _D
(= Bupesay 511 uo | UWNEo B A4 105 0
YZEL e
EBUEYZ0 o S_Ummm_.ﬂm SURSLEL MOyS _ SULSI PEPOPS PPd _lmg. PeRS
SI U WSS BMU a Airbuj
oy oneb noA 1ewp LoneuLojul uoneolddy
Po[ERD 84 SI9BH L - sspng [aDpomisiap uium | pewyd ok suomoeste.q sy
D IY 7 -
? = Sebl FNOK MO
SIHOY . SN ¢! Ys a3 s x| Gevl
NOA pinom SUOQVBSLIE.L 1BULEIUI INOK JO UPILMA @ — SUOfOESUBYL 4
@[= PV WOPS Py | das Uiy pedo || ok |
/ oAg | uLupy oDy PpyiAILoAE] PRY| SLwoH 39S |uuo4 Jesp) | wwod [| suondQ | dlyoid suomesues| suncaoy | savoned | e | awop
Syur /WO CISISSEMMAY/ iy m E
uld e Us.0s|In4 SpULEL) KasiH SA1LOAE YIS | SWoH UsSipy dayg plemio eg
? ©@ B & 2] | || ¥ Gl) & N
woo'soL0 tRdA W/ iy
9 dpf e asusol| Aeodusy sey e o)
XQ-ceus B Lpm pe.rdeo sbew)
)= J.oydx3 U T YOO TRy U0SH

Oltl

SUBSTITUTE SHEET (RULE 26)

WO 00/70500

17725

USER CONNECTS
TOIIM

1505

USER ACCESSES ADS PAGE

THROUGH IIM

1510

WHAT Ul

PCT/US00/11946

OPTION IS USER ADD BOOKMARK ,
SELECTING?
1515
SET HOME PAGE l
SET ADDRESS OF PAGE AS ADD ADDRESS OF PAGE TO
ADDRESS OF USER’S HOME-PAGE USER’S BOOKMARK DB
1520 1525

FIG. 15A

SUBSTITUTE SHEET (RULE 26)

WO 00/70500 PCT/US00/11946

1825

USER CONNECTS
TOIM

1535

USER REQUESTS ACCESS TO
BOOKMARKS THROUGH Ul

1540

[IM GENERATES A BOOKMARK
LST FROM USER’S BOOKMARK
DB AND SENDS{E% 5CB TODISPLAY

y

USER SELECTS A BOOKMARK
TO ACCESS DS PAGE

1550

v

IIM FETCHES PAGE URI FROM
BOOKMARK DATABASE

1555

IIM FETCHES DS PAGE,
INSTRUMENT DATA, AND SENDS
TO CLENT BRO1V%/SGOER TO DISPLAY

FIG. 15B

SUBSTITUTE SHEET (RULE 26)

WO 00/70500

FIG. 15C

19/25

USER CONNECTS
TOIIM

1570

USER REQUESTS ACCESS TO
HISTORY THROUGH UI
1575

[IM GENERATES AHISTORY
UST FROM USER’S HISTORY
DATABASE AND SENDS TO
(B TO DISPLAY 1580

USER’S SELECTS ALIST ENTRY
TO ACCESS DS PAGE
1582

[IM FETCHES PAGE URI
FROM HISTORY DATABASE

1585
y

IIM FETCHES DS PAGE,
INSTRUMENTS DATA, AND SENDS
TO CLIENT BROWSER TO DI SF%@B

SUBSTITUTE SHEET (RULE 26)

PCT/US00/11946

WO 00/70500

20/25

PCT/US00/11946

<base href="anyl IRL">

<base

href="http: /Amaw.DS.com/smyDo
cument.htmi“>

www.DS.comis the hosthame
of the DS. ThellM inserts the
first dase> tag line after the

link.href =“nes_ocation”

<HTML> tag and before the
base href="anyURL"> <HEAD> tag, and before any
exsiting <base> tags
<form action="/actionURL™> | SaveOrigAction(form, www.iIM.comis the hosthame
actionURL) of the HHIM and www.DS.com is
the hostname of the DS.
<form action=* SavelrigAction() is a
http: Avwww L IM comtedimect? act Javascript function that saves
=http:/Avww.DS.com the form's original action.
/actionURL">
<applet codebase="/codebase” | applet codebase=* www. |IM.comis the hosthame
code="applet.class”> http: /Amwwl M .comtedirect?cb of the {IM and www..DS.comis
= the hostnarre of the DS.
http: /Amaw.DS. comvcodebase”
code="applet dass”>
<frame src="/myframe.htm”> | <frame wwwiilM.comisd the hostname
src="http:/Avww.liM.comfedire of the M and www.DS.comiis
other tags e.g., <saipt>, ct?src=http: Avww. DS. cormimyF the hastname of the DS.
<area>, dayer>, <mg> rame.htm”>
f Mdl 2% 303 0::’ ONeyr e e els!

settRLProperty() sefs the
value of the property href to the
val

ue
“hitpe /Avw L IM. comediirect?ur
|=http: Awwn. DS.comhewt ocat
ion”, where ww.ilM.comis the
hostname of the |IM and
www.DS.comis the hosthame
of the DS.

link. ondlick = original OnClick

function
addNewLinkOndidk(link){
fink.ondickOrig =
link.ondidk;
link.ondlick
linkondick =
newLinkOndidk; }

function newl.inkOndidk(link){

if (link.originalHref = null)
link.originalHref = link. href;
var neatref =

getFullPathNarme(
link.originalHref);

link.href =

htp: Avww. M .cormvedirect? url

=newHref;

return link.onclickOrig(); }

getFullPathName() retruns the
full pathname URL of the
HTML and wwwi.lIM.comis the
hostname of the lIM. The
function addNewLinkOndick()
is catled when the HTML
document is firstloaded

FIG. 16A

SUBSTITUTE SHEET (RULE 26)

WO 00/70500

PCT/US00/11946

getFullPathName(form.original
Action);

form.action =
htip: ZAvw 1 IM..comvredirect?urd
=newAction;

Extends java.net Socket and

21/25
Original Code Altered Code Comments
documentwrite(StringToWrite) | writeDocurment (docurment, writeDocument() recursively
StringToWrite); modifies all HTTP control
points that occur in
StringToWrite
window.open(newlocation); | openWindow (window, openWindow calls
newl_ocation); windows.open() with the
argument
“http: /Avwwil S.comtedirect?urd
=htip: /Amaw.DS.comvhnew_ocation”
formonsubmit = function _ getFullPathName() retumns the
originalOnSubmit addNewtormOnsubmit(form){ full pathname URL of the
fonnonsumerjlg = HTML document and
form onsubrmit www.lIM.comis the hosthame
form.onsubmit = . of the lIM. The function
newFormOnsubmit; } addNewFormOnsubmit() is
) called when the HTML
function document is first loaded
newFormOnsubmit (form) §
if (form.original Action = null)
fformoriginal Action =
form.action; }
var newAction =

dass.java.net Socket The extended method modifies
overrides various constructors. the hostand port arguments.
The modified hast argument is
the hostnamre of the lIM. the
modified port argumentis the
portof thellM
java applet. AppletContext Extends The extended method modifies
java.applet AppletContext and the url argument. The modified
overrides various constructors url sends the HTTP request
the IIM with the full pathname
of the original url as a query
parameter
dass java.applet Applet Extends java.applet Applet and The extended method modifies
overrides various constructors the url argument. The modified
url sends the HTTP request o

the IIM with the full pathname
of the original url as query
parameter

FIG. 16B

SUBSTITUTE SHEET (RULE 26)

WO 00/70500

22/25

PCT/US00/11946

the full pathname of the
| g value = origDoc.htm http:/Avww.DS_comvorigDoc.htrm document’s original URL.
conent-type, content-hype, If the value of the content-type is
null, the lIM sets this header to
value = null e.g. value =imageif a value that desaribes the type
of content contained in the
docurment
refresh, 5000, IIM replaces the URL portion of
hup:/vamIS.oorTWed_irect?ref= the value of the refresh header
eg _ http: /Amww.DS. comvorigDoc.htm with the full pathname of the
5000 origDoc.htm document's original URL
301, 302 status codes, 301, 302 status codes, www.iIM.comis the hostname
of the lIM
eg, UR! value= URI value =
http:/Avww.DS.comforigDoc. | htpp:/AvmwilS.comutedirect? uri=
html htip:www.DS.com/origDoc.htmi
201, 303, 305, 307 status 201, 303, 305, 307 staws See 301, 302 status codes
codes ocodes
URI values modified URI values

FIG. 16C

SUBSTITUTE SHEET (RULE 26)

PCT/US00/11946

WO 00/70500

23/25

.m mﬁm 5 m 5 m M “sm.sﬁmm .
e mmmmww
s |3330 B8R, 92,088 [HEgiHRR-S
mm wm_m 258 memm S
52 At mmmm mmmwmwmmmmmﬁ
i HHIEHEE i
E
B 3 | 3 = b
4 4 SHEE
m (MM 2y .m wm
| Mmm TR
N R
m m 2 Sk
- A _ f m WM
bl B
£8n E .w .m”
R LI

FIG. 17

SUBSTITUTE SHEET (RULE 26)

WO 00/70500

PCT/US00/11946

public String getCookie (URL
url) {}

public statis Cookie
parseCookie(String str) {}

public void
aﬂc)i({];)olde(l SCookie coo, URL
ul

private boolean
validCookie(t SCookie coo, URL
x}m) {

24/25
Original Code Altered Code Comments
JavascriptEE R o5 : S '::" B s Z ;
String = document.cookie string = getCookie{ window, getCookie() gets the cookie's
document) value from the lIM and assigns
the value o string
document. cookie = setCookie(window, document, | setCookie() sends the value of
cookieString cookieString) cookieString o the lIM o be
HTTP Headers SRR 8283 geraterets’ S8 5 3R 23 253
ocookie IIM sends this header to the DS
on a need basis
J Java peRences SR s R s 2 % B 25 =2
javax.servet hitp.Cookie public dass ISCookie maintains the cookie’s creation
implements Serializable { time and contains convenience
routines that determineif the
private long_creationTime; ooolde has expired
public boolean hasExpired(){
{/ edqiration function code }
Cookies public dass Cookies extends extends the Java persistent
PersistantObject implements objectdass, andsaves ina
Seridizable { user database the user-specific

coolde inforrmation that the DS
sentin the set-cookie header
This class also finds the
cookies in the cookie database
that are valid for a certain URI
based on well known Cookie
rules and retums a Coolde
string for a given URI.

FIG. 18

SUBSTITUTE SHEET (RULE 26)

WO 00/70500 PCT/US00/11946
25/25
Original Code Altered Code Comments
Jama‘i lxx‘x : R 582 23 E: X0 . e o x:.x .:::: 258 x‘: .' :‘
windowlocation = nemM_ocation |setl_ocation(currentWindow, setl_ocation() sets the
window, nem.ocation) window location to the value
‘hitp: Avww M. comtedirect?url
=httpx /Avwwe DS. comvhem_ocation”
where www.|IM.comis the
hosthame of the [IM and
www.DS.comis the hostname
of the DS.
savel_ocation = savel_ocation = where getl_ocation retums
window location getlocation(currertWindow, window location except when
window) window is equal o the top
frame, then itreturns the DSDA top
top frame’s location
top.userProperty = value setTopProperty (where setTopProperty sets a
currentWindow, userProperty, user property on the DSDA top
value) frame with name userProperty
to have value value
window. parentuserProperty = | setTopProperty (where setTopProperty sets a
value window parent, userProperty, user property on the DSDA top
value) frame with name userProperty
o have value value if
window.parent evauates to the
top frame.

FIG. 19

SUBSTITUTE SHEET (RULE 26)

	2009-03-05 Foreign Reference

